## Algebra 2 Summer Work

Directions: Complete each problem to the best of your ability and show all work. You may use a graphing calculator. Under each section, record the date that you complete it. You are welcome to email me with any questions. If some of this material is confusing or challenging for you — do not worry! We will review all of this in the first few weeks of class. This will count for your first guiz grade of the year. Due on the first full day of class, Wednesday September 4.

\*There will be awkward blank spaces at some points in this packet — ignore those! The numbering of the questions may also seem strange on some pages. I took out some questions so the numbers skip around a bit.

I've also tried to put in some hints, so please use those. You are also welcome to responsibly use the internet for help.

|                                          | Date:                                                                                                 |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Order of Ops                             | Simplify each expression.                                                                             |  |
| & Evaluating<br>Expressions              | <b>1.</b> $6^3 \div \{(12+5^2)-( -7 -15)^2\}$ <b>2.</b> $\frac{3^3-6+\sqrt{-40+11^2}}{18-6^2\cdot 2}$ |  |
| Hint: PEMDAS                             |                                                                                                       |  |
|                                          |                                                                                                       |  |
|                                          |                                                                                                       |  |
|                                          | Evaluate the expressions below if $a = 8, b = -2$                                                     |  |
|                                          | <b>3.</b> $\left  -a^2 - 2bc \right $<br><b>4.</b> $-\frac{7}{6}c + \frac{3}{4}ab$                    |  |
|                                          |                                                                                                       |  |
|                                          |                                                                                                       |  |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                                       |  |

|                                          | Date:                                                                             |                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|
| Multi-Step<br>Equations                  | <b>Solve each equation.</b><br><b>1.</b> $14a - (2a + 9) = \frac{2}{3}(12a - 18)$ |                                                      |
| Hint: cross-<br>multiplication           | <b>3.</b> $\frac{3}{8} = \frac{6w - 7}{2w + 14}$                                  | <b>4.</b> Solve $F = \frac{9}{5}C + 32$ for <i>C</i> |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                   |                                                      |

|                                          | Date:                                                                                                                                                                                        |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Word<br>Problems                         | <ol> <li>The leg of an isosceles triangle is two less than three times<br/>the length of its base. If the perimeter of the triangle is 45<br/>meters, find the length of the leg.</li> </ol> |
| © Gina Wilson (All Things Algebra), 2015 | 2                                                                                                                                                                                            |

|                                                                                                           | Date:                 |                                               |
|-----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|
| Absolute<br>Value                                                                                         | Solve each equation.  | *Be sure to check for extraneous solutions. * |
| Equations                                                                                                 | <b>1.</b> $ 4x+6 =26$ | <b>2.</b> $\frac{1}{6} = 2$                   |
| Hint: the inside of<br>the absolute value<br>can be equal to<br>either a positive 26<br>or a negative 26. |                       |                                               |
| © Gina Wilson (All Things Algebra), 2015                                                                  |                       |                                               |

|                                                                                                 | Date:                                                      |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Multi-Step<br>Inequalities                                                                      | Solve, graph, and write the solution in interval notation. |
|                                                                                                 | <b>1.</b> $\frac{3(2x+16)}{-8} \ge x-1$                    |
| Hint: dividing or<br>multiplying<br>inequalities by a<br>negative number will<br>flip the sign. |                                                            |
|                                                                                                 | <b>2.</b> $-\frac{5}{4}(24-6m) > 14-\frac{1}{2}(16-7m)$    |
|                                                                                                 |                                                            |
|                                                                                                 | 3                                                          |

|                          | Date:                                                                                            |
|--------------------------|--------------------------------------------------------------------------------------------------|
| Compound<br>Inequalities | Solve, graph, and write the solution in interval notation.<br>1. $2(2-3c) \le -2$ or $4c+5 < -3$ |
|                          | <b>2.</b> $4-7a \le 67$ and $\frac{5a+2}{-9} > 2$                                                |
|                          |                                                                                                  |

|                                          | Date:                                                                                           |
|------------------------------------------|-------------------------------------------------------------------------------------------------|
| Absolute<br>Value<br>Inequalities        | <b>Solve, graph, and write the solution in interval notation.</b><br><b>1.</b> $ 6x-10  \le 34$ |
|                                          | <b>2.</b> $-6 2v-6 +5<-79$                                                                      |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                                 |

|                                          | Date:                                                                               |
|------------------------------------------|-------------------------------------------------------------------------------------|
| Evaluating                               | Given $f(x) = 8x - 9$ , $g(x) = -x^2 + 7x$ and<br>h(x) =  2 - 4x , find each value. |
| runctions                                | <b>1.</b> $g(8)$ <b>2.</b> $h(13) - f(-1)$                                          |
|                                          |                                                                                     |
|                                          |                                                                                     |
|                                          |                                                                                     |
|                                          |                                                                                     |
|                                          |                                                                                     |
|                                          | <b>5.</b> If $f(x) = -23$ , find x.                                                 |
|                                          |                                                                                     |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                     |



|                                          | Date:                                                                     |
|------------------------------------------|---------------------------------------------------------------------------|
| <i>x</i> - and <i>y</i> -                | Find the <i>x</i> - and <i>y</i> -intercepts of each equation, then graph |
| Intercepts                               | <b>1.</b> $y = -6x + 2$                                                   |
|                                          |                                                                           |
|                                          |                                                                           |
|                                          |                                                                           |
|                                          | <b>2.</b> $5x = 8y + 20$                                                  |
|                                          |                                                                           |
|                                          |                                                                           |
|                                          |                                                                           |
| © Gina Wilson (All Things Algebra), 2015 |                                                                           |

|                                                                                   | Date:                                                                      |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Point-Slope<br>& Two<br>Points                                                    | Write a linear equation with the given information.                        |
| You may leave your<br>answer in point-<br>slope form or slope-<br>intercept form. | <b>2.</b> Passes through (2, -6) and parallel to the line $2x - 3y = 15$ . |
|                                                                                   | <b>3.</b> Passes through the points (-9, 7) and (3, -2).                   |
| © Gina Wilson (All Things Algebra) 2015                                           | 7                                                                          |

|                                          | Date:                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>Equations<br>Applications      | Define variables, set up an equation, then solve. <ol> <li>Caitlyn is going away to college and will need to rent a truck to help<br/>move. The cost of the truck is \$35 plus \$0.79 per mile. If her college<br/>is 85 miles away and she budgeted \$100 for the rental, will she have<br/>enough money?</li> </ol> |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                                                                                                                                                                                                                                                       |

|                                                                                               | Date:                                                       |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Solving<br>Systems<br>by Graphing &<br>Substitution                                           | <b>1. Solve by graphing.</b><br>3x + 4y = -16<br>2x = y - 7 |
| Hint: "solving"<br>means to find the<br>coordinate where<br>the lines intersect.              |                                                             |
| Hint: isolate one<br>variable in one<br>equation, then plug it<br>into the other<br>equation. | 2. Solve by substitution.<br>2x + 7y = -23<br>5x - y = -39  |
| © Gina Wilson (All Things Algebra), 2015                                                      |                                                             |

|                                                                                                                                                                                                                  | Date:                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Solving<br>Systems:<br>by Elimination                                                                                                                                                                            | Solve each system by elimination.<br>1. $x-4y=-14$<br>6x+8y=-12 |  |
| Hint: Remember that<br>for elimination, you<br>need the coefficients<br>of one of the<br>variables to match<br>up. Then you can<br>add or subtract the<br>equations together<br>to "eliminate" that<br>variable. | <b>2.</b> $6y = 2x + 4$<br>7x + 14 = 21y                        |  |

|                                                                       | Date:                                                                                                                                                                                                                                     |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Systems<br>Applications                                               | Kate bought 5 pounds of hamburger and 2 pounds of<br>hotdogs and paid \$28.50. Eric bought half the amount of<br>hamburger and a fourth of the amount of hotdogs that Kate<br>did and paid \$12.50. Find the cost per pound of hamburgers |  |
| Hint: write one<br>equation for Kate<br>and one equation<br>for Eric. | and hotdogs.                                                                                                                                                                                                                              |  |
| © Gina Wilson (All Things Algebra), 2015                              |                                                                                                                                                                                                                                           |  |

|                                          | Date:                                                                    |
|------------------------------------------|--------------------------------------------------------------------------|
| Linear<br>Inequalities<br>& Systems      | <b>1.</b> Graph the linear inequality.<br>$4x-5y \ge 10$                 |
| © Cine Wilson (All Things Algebra), 2015 | 2. Graphing the system of linear inequalities.<br>6x + 3y > 15<br>y > -2 |

|                                          | Date:                                                                                                    |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Diacowico                                | Graph each function. State the domain and range.                                                         |  |
| Piecewise<br>Functions                   | <b>1.</b> $f(x) = \begin{cases} -3x - 5 & \text{if } x < -2 \\ -x + 1 & \text{if } x \ge -2 \end{cases}$ |  |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                                          |  |

|                                                                                                               | Date:                                                                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Absolute<br>Value<br>Functions<br>Hint: the graph of<br>an absolute value<br>function will look<br>like a "V" | <b>Graph each function using a table of values.</b><br><b>1.</b> $f(x) = -2 x+4 $ |
| Sina Wilson (All Things Algebra), 2015                                                                        |                                                                                   |

|                                                              | Date:                                                                            |                                                             |    |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|----|
| Parent<br>Functions &                                        | Identify the parent function for each function family,<br>then sketch the graph. |                                                             |    |
| Transformations                                              | <b>1.</b> Linear                                                                 | 2. Absolute Value                                           |    |
| Hint: is the function<br>moving up, down,<br>left, or right? | <b>Describe the transformation</b><br><b>3.</b> $f(x) =  x+8 $                   | <b>ns in each function</b> .<br><b>4.</b> $f(x) = - x  - 3$ |    |
|                                                              |                                                                                  | -                                                           | 13 |

|                                                 | Date:                                                                  |  |
|-------------------------------------------------|------------------------------------------------------------------------|--|
| Vertex Form<br>of an Absolute<br>Value Function | Give the vertex of each function, then graph.<br>1. $f(x) =  x+3  - 6$ |  |
| © Gina Wilson (All Things Algebra), 2015        |                                                                        |  |

|                                                                                                                                                      | Date:                                                                                    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---|
| Quadratic<br>Eunctions:                                                                                                                              | Give the axis of symmetry and vertex of each function.<br>Graph using a table of values. |   |
| Hint: You can find the x-coordinate of a quadratic by using $x=-b/(2a)$ . Once you                                                                   | <b>1.</b> $f(x) = x^2 + 6x + 8$                                                          | с |
| find the x-coordinate,<br>plug that value back<br>into the function to<br>find the y-coordinate<br>of the vertex. Then<br>make a table of<br>values! | <b>2.</b> $f(x) = -2x^2 - 4x + 5$                                                        | c |
| © Gina Wilson (All Things Algebra), 2015                                                                                                             |                                                                                          | 4 |

|                       | Date:                                                                                                     |                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|
| More Piecewise        | Graph each function. State the doma                                                                       | in and range.                         |
| Functions<br>Practice | <b>1.</b> $f(x) = \begin{cases}  x-1  - 5 & \text{if } x < 3 \\ -2x + 7 & \text{if } x \ge 3 \end{cases}$ |                                       |
|                       |                                                                                                           | • x                                   |
|                       | <b>2.</b> $f(x) = \begin{cases} x^2 - 1 & \text{if } x < -1 \\ 1 & \text{if } x < -1 \end{cases}$         | <i>y</i>                              |
|                       | $\left(-x+4 \text{ if } x > -1\right)$                                                                    | • • • • • • • • • • • • • • • • • • • |
|                       |                                                                                                           |                                       |



|                                          | Date:                                                        |  |
|------------------------------------------|--------------------------------------------------------------|--|
| Quadratic                                | 1. What are quadratic roots?                                 |  |
| ROOTS                                    | 2. What else are quadratic roots referred to as?             |  |
|                                          | <b>3.</b> Find the roots by graphing: $f(x) = -x^2 + 2x + 8$ |  |
|                                          | x                                                            |  |
| © Gina Wilson (All Things Algebra), 2015 | ↓ ↓                                                          |  |

|                                                                                                                  | Date:                              |                                                 |    |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|----|
| <b>P</b>                                                                                                         | Factor each polynomial completely: |                                                 |    |
| Review                                                                                                           | <b>1.</b> $x^2 - 14x - 95$         | <b>2.</b> $5x^2 - 40x + 80$                     |    |
| Hint: Always try to find a GCF first.                                                                            | -                                  |                                                 |    |
| For a trinomial with<br>no coefficient of<br>x^2, look for two<br>numbers that<br>multiply to c and<br>add to b. |                                    | <b>4.</b> 16 <i>x</i> <sup>2</sup> – 49         |    |
| And don't forget<br>about difference of<br>squares and the<br>a*c method.                                        |                                    | <b>6.</b> 24 <i>x</i> <sup>2</sup> –10 <i>x</i> |    |
| © Gina Wilson (All Things Algebra), 2015                                                                         |                                    |                                                 | 17 |

|                                                                         | Date:                                                           |                                                  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|--|
| Solving<br>Quadratics by<br>Factoring                                   | <b>Solve each quadratic e</b><br><b>1.</b> $x^2 + 11x + 30 = 0$ | equation by factoring:<br>2. $2x^2 + x = 2x + 6$ |  |
| Hint: you can only<br>factor when the<br>equation is set equal<br>to 0. |                                                                 |                                                  |  |
|                                                                         | <b>3.</b> $4x^2 - 74 = x^2 + 1$                                 |                                                  |  |
|                                                                         |                                                                 |                                                  |  |
| © Gina Wilson (All Things Algebra), 2015                                |                                                                 |                                                  |  |

|                                          | Date:                                                                                      |    |
|------------------------------------------|--------------------------------------------------------------------------------------------|----|
| Factored Form                            | <b>1.</b> What are the roots of the quadratic equation below?                              |    |
| VS.                                      | f(x) = (3x+2)(x-4)                                                                         |    |
| vertex Form                              |                                                                                            |    |
| Hint: "Roots" is another way of          | 2. Write the equation below in factored form Give the axis of symmetry, vertex, and roots. |    |
| saying x-intercepts.                     | $f(x) = -x^2 - 12x - 27$                                                                   |    |
|                                          |                                                                                            |    |
|                                          |                                                                                            |    |
|                                          |                                                                                            |    |
|                                          |                                                                                            |    |
|                                          |                                                                                            | 10 |
| © Gina Wilson (All Things Algebra), 2015 |                                                                                            | TO |

|                                                                                              | Date:                                          |                           |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|--|
| Solving                                                                                      | Solve each quadratic equation by square roots: |                           |  |
| Quadratics by<br>Square Roots                                                                | <b>1.</b> $x^2 - 10 = 159$                     | <b>2.</b> $36x^2 - 1 = 0$ |  |
| *Hint: The key with<br>solving by square<br>roots is to isolate the<br>x squared term first. |                                                |                           |  |
|                                                                                              | <b>3.</b> $2x^2 + 7 = 41$                      |                           |  |
|                                                                                              |                                                |                           |  |
|                                                                                              |                                                |                           |  |
|                                                                                              |                                                |                           |  |
| © Gina Wilson (All Things Algebra), 2015                                                     |                                                |                           |  |

|                                                                                                                                             | Date:                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Completing<br>the Square                                                                                                                    | Solve by completing the square:<br>1. $x^2 + 12x + 47 = 0$ |
| Hint: we had to<br>complete the square<br>when finding the<br>equation of circles.                                                          |                                                            |
| *#2 is tricky<br>because of the<br>coefficient of 4. Try<br>factoring out a 4<br>first from each term<br>and then completing<br>the square. | <b>2.</b> $-4x^2 + 408 = 20 - 8x$                          |
| © Gina Wilson (All Things Algebra). 2015                                                                                                    | 20                                                         |

|                                                                     | Date:                                                              |
|---------------------------------------------------------------------|--------------------------------------------------------------------|
| The Quadratic<br>Formula                                            | Solve by the quadratic formula:<br><b>1.</b> $10x^2 - 9x = 2x + 6$ |
| *If you forgot the<br>quadratic formula,<br>feel free to Google it. |                                                                    |
|                                                                     | <b>2.</b> $-x^2 = 8x + 26$                                         |
| © Gina Wilson (All Things Algebra), 2015                            |                                                                    |

|                                                                                                                                                                                                                         | Date:                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Projectile<br>Motion                                                                                                                                                                                                    | The football coach threw a football from a platform to his quarterback below. The height of the football, <i>h</i> , at time <i>t</i> seconds is modeled by the equation $h(t) = -16t^2 + 28t + 15$ .<br><b>1.</b> What is the maximum height of the ball? |
| *Hint: Think about if<br>the quadratic will be<br>facing up or down.<br>Which part of the<br>quadratic represents<br>the maximum height?<br>How will you find the<br>coordinate of that<br>point?                       | 2. If the quarterback caught the ball at a height of 6 feet, how many seconds was the ball in the air?                                                                                                                                                     |
| For #2, you are given<br>the height, and you<br>are now trying to find<br>time. Will you plug in<br>6 for h(t) or t in the<br>equation?                                                                                 |                                                                                                                                                                                                                                                            |
| the maximum height?<br>How will you find the<br>coordinate of that<br>point?<br>For #2, you are given<br>the height, and you<br>are now trying to find<br>time. Will you plug in<br>6 for h(t) or t in the<br>equation? |                                                                                                                                                                                                                                                            |